Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels

نویسندگان

  • Adam J. Connolly
  • Edward Vigmond
  • Martin J. Bishop
چکیده

INTRODUCTION AND BACKGROUND Virtual electrodes formed by field stimulation during defibrillation of cardiac tissue play an important role in eliciting activations. It has been suggested that the coronary vasculature is an important source of virtual electrodes, especially during low-energy defibrillation. This work aims to further the understanding of how virtual electrodes from the coronary vasculature influence defibrillation outcomes. METHODS Using the bidomain model, we investigated how field stimulation elicited activations from virtual electrodes around idealized intramural blood vessels. Strength-interval curves, which quantify the stimulus strength required to elicit wavefront propagation from the vessels at different states of tissue refractoriness, were computed for each idealized geometry. RESULTS Make excitations occurred at late diastolic intervals, originating from regions of depolarization around the vessel. Break excitations occurred at early diastolic intervals, whereby the vessels were able to excite surrounding refractory tissue due to the local restoration of excitability by virtual electrode-induced hyperpolarizations. Overall, strength-interval curves had similar morphologies and underlying excitation mechanisms compared with previous experimental and numerical unipolar stimulation studies of cardiac tissue. Including the presence of the vessel wall increased the field strength required for make excitations but decreased the field strength required for break excitations, and the field strength at which break excitations occurred was generally greater than 5 V/cm. Finally, in a more realistic ventricular slice geometry, the proximity of virtual electrodes around subepicardial vessels was seen to cause break excitations in the form of propagating unstable wavelets to the subepicardial layer. CONCLUSION Representing the blood vessel wall microstructure in computational bidomain models of defibrillation is recommended as it significantly alters the electrophysiological response of the vessel to field stimulation. Although vessels may facilitate excitation of relatively refractory tissue via break excitations, the field strength required for this is generally greater than those used in the literature on low-energy defibrillation. However, the high-intensity shocks used in standard defibrillation may elicit break excitation propagation from the coronary vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the role of the coronary vasculature in the mechanisms of defibrillation.

BACKGROUND The direct role of coronary vessels in defibrillation, although hypothesized to be important, remains to be elucidated. We investigated how vessel-induced virtual electrode polarizations assist reentry termination. METHODS AND RESULTS A highly anatomically detailed rabbit ventricular slice bidomain computer model was constructed from 25-μm magnetic resonance data, faithfully repres...

متن کامل

Virtual electrodes around anatomical structures and their roles in defibrillation

BACKGROUND Virtual electrodes from structural/conductivity heterogeneities are known to elicit wavefront propagation, upon field-stimulation, and are thought to be important for defibrillation. In this work we investigate how the constitutive and geometrical parameters associated with such anatomical heterogeneities, represented by endo/epicardial surfaces and intramural surfaces in the form of...

متن کامل

Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation.

Traditional cable analyses cannot explain complex patterns of excitation in cardiac tissue with unipolar, extracellular anodal, or cathodal stimuli. Epifluorescence imaging of the transmembrane potential during and after stimulation of both refractory and excitable tissue shows distinctive regions of simultaneous depolarization and hyperpolarization during stimulation that act as virtual cathod...

متن کامل

Anode / Cathode Make and Break Phenomena in aModel of De brillation 1

The goal of this simulation study is to examine, in a sheet of myocardium, the contribution of anode and cathode break phenomena in terminating a spiral wave reentry by the de brillation shock. The tissue is represented as a homogeneous bidomain with unequal anisotropy ratios. Two case studies are presented in this article: tissue that can electroporate at high levels of transmembrane potential...

متن کامل

Depolarization Diffusion during Weak Suprathreshold Stimulation of Cardiac Tissue

Background: The theory of stimulation of cardiac tissue based on virtual electrode (VE) polarization was presented by Wikswo and his group (Wikswo, Biophys. J., 1995). Four basic regimes were distinguished: anodal make, anodal break, cathodal make, and cathodal break. We sought to determine applicability of this theory for near-threshold stimulus intensities. Methods: For the experiments we use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017